An Active Set SQP Algorithm for Nonlinear Programming with Inexact Subproblem Solutions - T. C. Johnson

- F. E. Curtis - D. P. Robinson - A. Wächter

Johns Hopkins, Lehigh, Northwestern

GOALSolve: $\min f(x)$ s.t. $c(x) \leq 0...$

GOALMainf(x)Solve:s.t. $c(x) \leq 0...$

with **inexact** subproblem solutions

$\textbf{Problem} \mapsto \textbf{Subproblems}$

$\textbf{Problem}\mapsto \textbf{Subproblems}$

Problem: F(z) = 0

Problem: Subproblem: $F(z) = 0 \longrightarrow F'(z)d = -F(z)$

Problem: Subproblem:

$$F(z) = 0 \longrightarrow F'(z)d = -F(z)$$

Direct Methods:

Problem: Subproblem:

$$F(z) = 0 \longrightarrow F'(z)d = -F(z)$$

Problem: Subproblem:

$$F(z) = 0 \longrightarrow F'(z)d = -F(z)$$

$\|F(z) + F(z)d\| \leq \eta \|F(z)\|$ $0 < \eta < 1$

Problem: Subproblem:

$$F(z) = 0 \longrightarrow F'(z)d = -F(z)$$

??: $||F(z) + F(z)d|| \le \eta ||F(z)||$ $0 < \eta < 1$

Problem: Subproblem:

$$F(z) = 0 \longrightarrow F'(z)d = -F(z)$$

??:
$$\|F(z) + F(z)d\| \leq \eta \|F(z)\|$$

Dembo et al 82

Problem:

$$F(z) = 0 \longrightarrow F'(z)d = -F(z)$$

(any): $\|F(z) + F(z)d\| \leq \eta \|F(z)\|$ Dembo et al 82

Inexact "trick" for Constrained Optimization

Equality Constrained:

Problem: min f(x)s.t. c(x) = 0

Equality Constrained:

Inequality Constrained Interior Point:

Problem: min f(x)s.t. c(x) = 0 $x \ge 0$

Inequality Constrained Interior Point:

Problem: min $f(x) - \sum \ln x$ s.t. c(x) = 0

Inequality Constrained Interior Point:

Problem: min f(x)s.t. c(x) = 0 $x \ge 0$

Problem: min f(x)s.t. c(x) = 0 $x \ge 0$ Subproblem: min $I/2d^TWd + g^Td$ s.t. Ad + c = 0 $x + d \ge 0$

Problem: min f(x)s.t. c(x) = 0 $x \ge 0$

Subproblem: min $I/2d^TWd + g^Td$ s.t. Ad + c = 0x + d > 0min $I/2d^TWd + g^Td$ $-\sum \ln(\mathbf{x}+\mathbf{d})$ s.t. Ad + c = 0

Problem: min f(x)s.t. c(x) = 0 $x \ge 0$ Subproblem: min $I/2d^TWd + g^Td$ s.t. Ad + c = 0 $x + d \ge 0$

$$\begin{bmatrix} W & A^T \\ A & 0 \end{bmatrix} \begin{pmatrix} d \\ \lambda^+ \end{pmatrix} = - \begin{pmatrix} g \\ c \end{pmatrix}$$

Problem: min f(x)s.t. c(x) = 0 $x \ge 0$ Subproblem: min $I/2d^TWd + g^Td$ s.t. Ad + c = 0 $x + d \ge 0$

Problem		Subproblem:	
min	f(x)	min	I/2d'Wd + g'd
s.t.	$c(\mathbf{x}) = 0$	s.t.	Ad + c = 0
	$x \ge 0$		$x + d \ge 0$
S	Staying SQP critic	al for:	

Problem:		Subproblem:	
min	$f(\mathbf{x})$	min	I/2d'Wd + g'd
s.t.	c(x) = 0	s.t.	Ad + c = 0
	$x \ge 0$		$x + d \ge 0$
	Staying SOP criti	cal for:	

•Mixed integer nonlinear programming

Problem:		Subproblem:	
min	$f(\mathbf{x})$	min	I/2d'Wd + g'd
s.t.	$c(\mathbf{x}) = 0$	s.t.	Ad + c = 0
	x ≥ 0		$x + d \ge 0$

Staying SQP critical for:

- •Mixed integer nonlinear programming
- •Nonlinear model predictive control

Problem		Subproblem:	
min	$f(\mathbf{x})$	min	I/2d'Wd + g'd
s.t.	$\boldsymbol{c}(\boldsymbol{x}) = \boldsymbol{0}$	s.t.	Ad + c = 0
	$x \ge 0$		$x + d \ge 0$
	Staving SOD critic	sal far	

Staying SQP critical for:

- Mixed integer nonlinear programming
- Nonlinear model predictive control

Inexact methods:

- Reduce residual in subproblem
- Are lazy
- Exploit problem structure

Plan

- I. Review SQP & $S\ell_IQP$
- 2. Inexactness and Penalty Steering
- 3. Theory & Numerical Results

SQP REVIEW

SQP & Line Search

SQP & Line Search x_{k}

Sei QP IDEA

Sliger IDEA

Sei QP IDEA

 $\phi(\mathbf{x}, \mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$

Two Questions

- How can we deal with inexactness?
- How can we deal with penalty parameter?

Two Questions

• How can we deal with inexactness?

• How can we deal with penalty parameter?

Quadratic				
Programming Residuals				
	Nonlinear Equations	Nonlinear Optimization		
Problem	<i>F</i> (<i>z</i>)			
Subproblem	$\ F(z) + F'(z)d\ $			

Quadratic				
Programming Residuals				
	Nonlinear Equations	Nonlinear Optimization		
Problem	$\ F(z)\ $	NLP KKT Residual		
Subproblem	$\ F(z) + F'(z)d\ $			

Quadratic				
Programming Residuals				
	Nonlinear Equations	Nonlinear Optimization		
Problem	$\ F(z)\ $	NLP KKT Residual		
Subproblem	$\ F(z) + F'(z)d\ $	QP KKT Residual		

Quadratic				
Programming Residuals				
	Nonlinear Equations	Nonlinear Optimization		
Problem	$\ F(z)\ $	$ \left\ \begin{bmatrix} \mu \nabla f + \nabla c \lambda \\ \min([c]^+, e - \lambda) \\ \min([c]^-, \lambda) \end{bmatrix} \right\ $		
Subproblem	$\ F(z) + F'(z)d\ $	QP KKT Residual		

Quadratic				
Programming Residuals				
	Nonlinear Equations	Nonlinear Optimization		
Problem	$\ F(z)\ $	$ \left\ \begin{bmatrix} \mu \nabla f + \nabla c \lambda \\ \min([c]^+, e - \lambda) \\ \min([c]^-, \lambda) \end{bmatrix} \right\ $		
Subproblem	$\ F(z) + F'(z)d\ $	$ \left\ \begin{bmatrix} \mu \mathbf{g} + H\mathbf{d} + J\lambda \\ \min([\mathbf{c} + J^T\mathbf{d}]^+, \mathbf{e} - \lambda) \\ \min([\mathbf{c} + J^T\mathbf{d}]^-, \lambda) \end{bmatrix} \right\ $		

Nonlinear Equations

Nonlinear Equations

 $\|\mathbf{F}(\mathbf{z}) + \mathbf{F}'(\mathbf{z})\mathbf{d}\| \le \kappa \|\mathbf{F}(\mathbf{z})\|$

Nonlinear Equations $\|F(z) + F'(z)d\| \le \kappa \|F(z)\|$

Quadratic Programming

Nonlinear Equations

 $\|\mathbf{F}(\mathbf{z}) + \mathbf{F}'(\mathbf{z})\mathbf{d}\| \le \kappa \|\mathbf{F}(\mathbf{z})\|$

 $\begin{aligned} & \left\| \begin{bmatrix} \mu \mathbf{g} + H\mathbf{d} + J\lambda \\ \min([\mathbf{c} + J^{\mathsf{T}}\mathbf{d}]^{+}, \mathbf{e} - \lambda) \\ \min([\mathbf{c} + J^{\mathsf{T}}\mathbf{d}]^{-}, \lambda) \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \mu \nabla \mathbf{f} + \nabla \mathbf{c}\lambda \\ \min([\mathbf{c}]^{+}, \mathbf{e} - \lambda) \\ \min([\mathbf{c}]^{-}, \lambda) \end{bmatrix} \right\| \end{aligned}$

Nonlinear Equations

 $\|\mathbf{F}(\mathbf{z}) + \mathbf{F}'(\mathbf{z})\mathbf{d}\| \le \kappa \|\mathbf{F}(\mathbf{z})\|$

$\begin{aligned} & \left\| \begin{bmatrix} \mu \mathbf{g} + H\mathbf{d} + J\lambda \\ \min([\mathbf{c} + J^{\mathsf{T}}\mathbf{d}]^{+}, \mathbf{e} - \lambda) \\ \min([\mathbf{c} + J^{\mathsf{T}}\mathbf{d}]^{-}, \lambda) \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \mu \nabla f + \nabla c\lambda \\ \min([\mathbf{c}]^{+}, \mathbf{e} - \lambda) \\ \min([\mathbf{c}]^{-}, \lambda) \end{bmatrix} \right\| \end{aligned}$

+ other conditions (on linear model reduction, multipliers, etc)

Two Questions

- How can we deal with inexactness?
- How can we deal with penalty parameter?

is exact if

• Infeasible subproblems...

is exact if

Wednesday, October 23, 13

- Infeasible subproblems...
- and infeasible problems!

- Infeasible subproblems...
- and infeasible problems!
- can be EXACT, but

is exact if

- Infeasible subproblems...
- and infeasible problems!
- can be EXACT, but Need $\mu \leq \frac{1}{\|\lambda^*\|_{L^2}}$

is exact if

$S\ell_IQP: \mu \text{ strategy}$

REWORK THIS SLIDE.

$S\ell_IQP: \mu \text{ strategy}$

REWORK THIS SLIDE.

μ too large: Not exact yet? Infeasible??
$S\ell_IQP: \mu \text{ strategy}$

REWORK THIS SLIPE.

μ too large: Not exact yet? Infeasible?? μ too small: Stuck at feasible point???

IDEA: Penalty Steering

Sl_IQP Framework

Sl_IQP Framework

Solve

- Good? Okay?
- What combination?
- Need to solve two QPs?
- What about non-convexity?

• Good? Okay?

- What combination?
- Need to solve two QPs?
- What about non-convexity?

Good or Okay? Intuition

Distance to minimizer proportional to infeasibility

Distance to minimizer proportional to distance to minimizer of infeasibility

Good or Okay? Rigorous

- $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$
- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(\mathbf{d};\mu) = I(\mathbf{0};\mu) I(\mathbf{d};\mu) = -\mu(\mathbf{g}_k^T\mathbf{d}) + \|[\mathbf{c}_k]^+\|_{\mathbf{I}} \|[\mathbf{c}_k + \mathbf{J}_k^T\mathbf{d}]^+\|_{\mathbf{I}}$

Good or Okay? Rigorous

- $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$
- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(\mathbf{d};\mu) = I(\mathbf{0};\mu) I(\mathbf{d};\mu) = -\mu(\mathbf{g}_k^T\mathbf{d}) + \|[\mathbf{c}_k]^+\|_{\mathbf{I}} \|[\mathbf{c}_k + \mathbf{J}_k^T\mathbf{d}]^+\|_{\mathbf{I}}$

29

Good or Okay? Rigorous

- $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$
- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(0;\mu) I(d;\mu) = -\mu(g_k^T d) + ||[c_k]^+||_1 ||[c_k + J_k^T d]^+||_1$

- Good? Okay?
- What combination?
- Need to solve two QPs?
- What about non-convexity?

- $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$
- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(0;\mu) I(d;\mu) = -\mu(g_k^T d) + ||[c_k]^+||_1 ||[c_k + J_k^T d]^+||_1$ **GOAL:** $\tau d_k^P + (I - \tau) d_k^F$ Okay

ewan?

- $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$
- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(\mathbf{0};\mu) I(d;\mu) = -\mu(\mathbf{g}_k^T d) + \|[\mathbf{c}_k]^+\|_1 \|[\mathbf{c}_k + \mathbf{J}_k^T d]^+\|_1$ **GOAL:** $\Delta I(\tau d_k^P + (\mathbf{I} - \tau) d_k^P, \mu) \ge \epsilon \Delta I(d_k^P, \mathbf{0})$

swan?

• $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$

swan?

- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(\mathbf{0};\mu) I(d;\mu) = -\mu(\mathbf{g}_k^T\mathbf{d}) + \|[\mathbf{c}_k]^+\|_1 \|[\mathbf{c}_k + \mathbf{J}_k^T\mathbf{d}]^+\|_1$ **GOAL:** $\Delta I(\tau \mathbf{d}_k^P + (\mathbf{I} - \tau)\mathbf{d}_k^P,\mu) \ge \epsilon \Delta I(\mathbf{d}_k^P,\mathbf{0})$

• $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$

swan?

- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(\mathbf{0};\mu) I(d;\mu) = -\mu(\mathbf{g}_k^T\mathbf{d}) + \|[\mathbf{c}_k]^+\|_1 \|[\mathbf{c}_k + \mathbf{J}_k^T\mathbf{d}]^+\|_1$ **GOAL:** $\Delta I(\tau \mathbf{d}_k^\mathsf{P} + (\mathbf{I} - \tau)\mathbf{d}_k^\mathsf{F},\mu) \ge \epsilon \Delta I(\mathbf{d}_k^\mathsf{F},\mathbf{0})$

• $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$

swan?

- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(\mathbf{0};\mu) I(d;\mu) = -\mu(\mathbf{g}_k^T\mathbf{d}) + \|[\mathbf{c}_k]^+\|_1 \|[\mathbf{c}_k + \mathbf{J}_k^T\mathbf{d}]^+\|_1$ **GOAL:** $\Delta I(\tau \mathbf{d}_k^P + (\mathbf{I} - \tau)\mathbf{d}_k^P,\mu) \ge \epsilon \Delta I(\mathbf{d}_k^P,\mathbf{0})$

31

• $\phi(\mathbf{x};\mu) = \mu f(\mathbf{x}) + \| [c(\mathbf{x})]^+ \|_{\mathbf{I}}$

swan?

- $I(d; \mu) = \mu(f_k + g_k^T d) + \|[c_k + J_k^T d]^+\|_1$
- $\Delta I(d;\mu) = I(\mathbf{0};\mu) I(d;\mu) = -\mu(\mathbf{g}_k^T\mathbf{d}) + \|[\mathbf{c}_k]^+\|_1 \|[\mathbf{c}_k + \mathbf{J}_k^T\mathbf{d}]^+\|_1$ **GOAL:** $\Delta I(\tau \mathbf{d}_k^P + (\mathbf{I} - \tau)\mathbf{d}_k^P,\mu) \ge \epsilon \Delta I(\mathbf{d}_k^P,\mathbf{0})$

31

- Good? Okay?
- What combination?

• Need to solve two QPs?

• What about non-convexity?

- Good? Okay?
- What combination?
- Need to solve two QPs?

• What about non-convexity?

Non-Convexity Strategy

If non-positive curvature in step direction: $H \leftarrow H + \xi I$

GLOBAL CONVERGENCE THEORY

GLOBAL CONVERGENCE

Theorem: If

- **I.** *f*, *c* are continuously differentiable and *f*, *c*, ∇f , and ∇c are bounded,
- 2. x_k and μ_k are generated by the algorithm,

then one of the following holds:

- (a) $\mu_k = \underline{\mu}$ for some $\underline{\mu} > 0$ for all large k and either every limit point x_* of $\{x_k\}$ corresponds to a KKT point or is an infeasible stationary point;
- (b) $\mu_k \to 0$ and every limit point x_* of $\{x_k\}$ infeasible and a stationary point for min $\|[c(x)]^+\|_1$.
- (c) $\mu_k \to 0$, all limit points of $\{x_k\}$ are feasible for , and, with $K_{\mu} := \{k : \mu_{k+1} < \mu_k\}$, every limit point x_* of $\{x_k\}_{k \in K_{\mu}}$ corresponds to a Fritz-John point at which the MFCQ fails.

NUMERICAL RESULTS

Numerical Questions

- How to generate inexact subproblem solutions?
- Practical success rate?
- Typical inexactness in accepted solutions?
- How many more iterations?

Implementation

- MATLAB code, C++ version in works
- Subproblem solver: **bqpd**
- Test set: 307 CUTEr/AMPL problems

• Ideally: inexact QP solver

- Ideally: inexact QP solver
- For now: Perturb exact solutions

- Ideally: inexact QP solver
- For now: Perturb exact solutions
- Reduction Imposed: Measured by κ

- Ideally: inexact QP solver
- For now: Perturb exact solutions
- Reduction Imposed: Measured by κ

$$\left\| \begin{bmatrix} \mu \mathbf{g} + H\mathbf{d} + J\lambda \\ \min([\mathbf{c} + J^T\mathbf{d}]^+, \mathbf{e} - \lambda) \\ \min([\mathbf{c} + J^T\mathbf{d}]^-, \lambda) \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \mu \nabla \mathbf{f} + \nabla \mathbf{c}\lambda \\ \min([\mathbf{c}]^+, \mathbf{e} - \lambda) \\ \min([\mathbf{c}]^-, \lambda) \end{bmatrix} \right\|$$

Success Rate

	Exact	Inexact			
		$\kappa = 0.01$	$\kappa = 0.1$	$\kappa = 0.5$	
Optimal solution found	271	269	272	275	
Infeasible stationary point found	4	3	2	2	
Iteration limit reached	12	10	11	9	
Subproblem solver failure	18	23	20	19	

Measuring realized (induced) inexactness

$$\kappa_{I} := \left\| \begin{bmatrix} \mu g + Hd + A\lambda \\ \min([c + J^{T}d]^{+}, e - \lambda) \\ \min([c + J^{T}d]^{-}, \lambda) \end{bmatrix} \right\| / \left\| \begin{bmatrix} \mu \nabla f + (\nabla^{2}\mathcal{L})d + \nabla c\lambda \\ \min([c]^{+}, e - \lambda) \\ \min([c]^{-}, \lambda) \end{bmatrix} \right\|$$
(NLP residual)

Typical Inexactness											
			~	()))			20 20 30 30	0.01		5.0 40	
min	κ	$\kappa_{I,\mathrm{mean}}$	6.		$\langle \mathcal{P}_{\boldsymbol{0}}$	10	10	<i>6</i> ,	Q.Y	<i>6</i> ;	
	0.01	3.5e-03	0	2	10	7	253	0	0	0	0
$\mathcal{E}I(\mathcal{J})$	0.1	2.8e-02	0	0	2	10	30	232	0	0	0
	0.5	8.8e-02	0	0	2	4	23	69	179	0	0
mean	κ	$ar{\kappa}_{I, ext{mean}}$									
	0.01	7.3e-03	0	0	0	0	254	18	0	0	0
$\overline{\mathfrak{c}}_I(\mathfrak{I})$	0.1	6.9e-02	0	0	0	0	0	261	13	0	0
	0.5	3.5e-01	0	0	0	0	0	1	264	12	0

Inexactness Slowdown?

Key Numerical Results

- is reliable
- is able to take large perturbations
- uses more QP solves

Concluding Remarks

- Inexact methods: Lazily reduce residual
- Penalty steering methods: Update \$mu\$
- Both:Trade off more iterations to faster iterations
 - Hopefully!! Still need an active set, inexact QP solver (if it exists)

THANKS.