	CORRELA
Abs	stract
How do the nonlinear dynamic statistics of their common force their response? Prevous studies tial features of neural firing-spike correlation from common input se findings utilized a simple 'integra the question of whether the pre- to more biologically realistic more this hear, for the two-dimensional by Izhikevich. First, we perform tify relevant parameter ranges. putational simulations to study present an explanation for an under a similar study of the Type-II of	cs of neurons combine withing to determine correlations shave found that the two e rate and neuron-to-neuron signals-are strongly related. cate-and-fire' model, leaving revious findings can be extended of neural firing. We and al, hybrid neuron model pro- m a bifurcation analysis to Next, we use medium-scale the correlation transfer. We expected discrepancy and pe- nly FitzHugh-Nagumo model
Background-Why study correlations?	
 Correlation between neurons determ works of many neurons. Neurons may encode information by Correlations bring up interesting pro- tational science. 	nines overall signal-to-noise ratio utilizing multiple neurons in sync oblems in dynamical systems and
Background: quantif	ying spike correlations
Background: quantif	ying spike correlations • $n_i = \#$ of spikes in a with length T for neuron i • C_{ii}, C_{ij} = auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$
Background: quantif	Fying spike correlations • $n_i = \#$ of spikes in a wilength T for neuron i • $C_{ii}, C_{ij} = $ auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$
Background: quantif $n_1 = 2, 2, 3$ $n_2 = 3, 3, 2$ Spike Windows(de la Rocha) $\rho_T = \frac{Cov(n_1, n_2)}{\sqrt{Var(n_1)Var(n_2)}} = \frac{1}{\sqrt{\int_{-T}^{T}}}$	Fying spike correlations • $n_i = \#$ of spikes in a will length T for neuron i • $C_{ii}, C_{ij} =$ auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$ $\int_{-T}^{T} C_{12}(t) \frac{T - t }{T} dt$ $\int_{-T}^{T} C_{12}(t) \frac{T - t }{T} dt$
Background: quantif $n_1 = 2, 2, 3$ $n_1 = 2, 2, 3$ $n_2 = 3, 3, 2$ Spike Windows(de la Rocha) $\rho_T = \frac{Cov(n_1, n_2)}{\sqrt{Var(n_1)Var(n_2)}} = \frac{\sqrt{\int_{-\infty}^{T}}}{\sqrt{\int_{-\infty}^{T}}}$	ying spike correlations • $n_i = \#$ of spikes in a will length T for neuron i • $C_{ii}, C_{ij} =$ auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$ $\int_{-T}^{T} C_{12}(t) \frac{T - t }{T} dt$ $\int_{-T}^{T} C_{12}(t) \frac{T - t }{T} dt$
Background: quantif Background: quantif $n_1 = 2, 2, 3, 3, 2$ $n_2 = 3, 3, 2, 2$ Spike Windows(de la Rocha) $\rho_T \equiv \frac{Cov(n_1, n_2)}{\sqrt{Var(n_1)Var(n_2)}} = \frac{1}{\sqrt{\int_{-2}^{T}}}$ Beferences: 1. Binder & Powells, J. Neurophys.,	Fying spike correlations • $n_i = \#$ of spikes in a widength T for neuron i • C_{ii}, C_{ij} = auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt$ 6. Kohn & Smith, J. Nsci., 2
Background: quantif $I_{n_{1}=2}, 2, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	ying spike correlations • $n_i = \#$ of spikes in a willength T for neuron i • $C_{ii}, C_{ij} =$ auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt$ 6. Kohn & Smith, J. Nsci., 2 7. Lindner, Doiron, & H PRE, 2005
Background: quantif $M_{n} = 2, 2, 3, 3, 2$ Spike Windows(de la Rocha) $\rho_T \equiv \frac{Cov(n_1, n_2)}{\sqrt{Var(n_1)Var(n_2)}} = \frac{\sqrt{\int_{-2}^{T}}}{\sqrt{\int_{-2}^{T}}}$ References: 1. Binder & Powells, J. Neurophys., 2001 2. Barreiro, Shea-Brown, & Thilo, COSYNE, 2009 3. de la Rocha, Doiron, Shea-Brown, Reyes, Nature, 2007	ying spike correlations • $n_i = \#$ of spikes in a willingth T for neuron i • $C_{ii}, C_{ij} =$ auto- and correlation function of trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt \int_{-T}^{T} C_{22}(t) \frac{T- t }{T} dt$ 6. Kohn & Smith, J. Nsci., 2 7. Lindner, Doiron, & H PRE, 2005 8. Salianas & Sejnowski, J 2000
Background: quantif Background: quantif $n_r = 2, 2, 3$ $n_r = 2, 2, 3$ $n_r = 2, 2, 3$ $n_r = 2, 2, 3$ $n_r = 3, 3, 2$ Spike Windows(de la Rocha) $\rho_T \equiv \frac{Cov(n_1, n_2)}{\sqrt{Var(n_1)Var(n_2)}} = \frac{1}{\sqrt{\int_{-2}^{T}}}$ References: 1. Binder & Powells, J. Neurophys., 2001 2. Barreiro, Shea-Brown, & Thilo, COSYNE, 2009 3. de la Rocha, Doiron, Shea-Brown, Reyes, Nature, 2007 4. Izhikevich, IEEE Transactions, 2003	ying spike correlations • $n_i = \#$ of spikes in a willength T for neuron i • $C_{ii}, C_{ij} =$ auto- and correlation function on trains. • $C_{ij}(t) \equiv \langle y_i(t)y_j(t+\tau) \rangle$ • $v_i \equiv \langle y_i(t) \rangle$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt$ $\int_{-T}^{T} C_{12}(t) \frac{T- t }{T} dt \int_{-T}^{T} C_{22}(t) \frac{T- t }{T} dt$ 6. Kohn & Smith, J. Nsci., 2 7. Lindner, Doiron, & H PRE, 2005 8. Salianas & Sejnowski, J 2000 9. Shadlen & Newsome, - 1998

